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S-Parameter Broadband Measurements
On-Coplanar and Fast Extraction of the
Substrate Intrinsic Properties

Juan Hinojosa

Abstract—A broadband technique for determining the electro-
magnetic properties of isotropic thin-film materials, which uses a 51 - 10- 0.0 —3_10.0
coplanar line, is presented. Complex permittivity and permeability I & =10 -19. & I i

Pt

are computed from S-parameter measurements of a coplanar cell
propagating the dominant mode. Measurect,. and g, data for sev-

eral materials are presented between 0.05 GHz and 40 GHz. This %3 — L4 * .
technique shows a good agreement between measured and pre- £ = 10 - jO.1 § =10 -il-V
dicted data. .

L 1, = 0.6 - j0.006 M =3-j03

Index Terms—Broadband measurement, coplanar, perme-
ability, permittivity, propagation, S-parameters. W+28=175um

h=63S um

954
. INTRODUCTION

Characteristic impedance Q)

N NUMEROUS applications, for a large variety of thin-film

materials and in a Broadband of frequencies, the permi ' } } } } } } }
tivity and permeability measurements are required. Contra ) 5 10 15 20 p) 3 3 4
to the box-shaped broadband cells (coaxial, rectangular wax Frequency (GHz)

guide or stripline device) [1]-[3], the coplanar and microstrif.

lines used as sample-cells do not present air gaps between the . . .
| d th duct . th r rod d ont . 1. Magnitude of calculated coplanar characteristic impedance against

sample and the conductors, since they are produced onto ¢B& ency and various substratess—s—m— Characteristic of the substrate:

sample to be characterized. Moreover, they allow thin-film ma: = 3 — 0.0, #, = 1 — j0.0. —x—=—— Characteristic of the substrate:
terials to be characterized and the characteristic impedance tg 10 =700,/ = 1= J0.0. —&—4- Characteristic of the Substrate:
be changed by modifying the conductive strip width. Thus, it §psirater. = 10 j1.0, 1. =3 — j0.3. aracieristic o fhe
possible to optimize their shape in order to propagate the dom-

inant mode (quasi-TEM) and to perform accurdt@arameter tion and approximate equations. TEigparameter measurement
measurements with the same cell in a broadband of frequenclegnch employs a vector network analyzer and a high-quality test
In the case of dominant mode and contrary to the microstrifture on-coplanar covering 0.05-40 GHz.

the coplanar characteristic impedance (Fig. 1) is quasiconstant

in the dc to 40 GHz frequency range for a large variety of sub- Il. PROCESSINGMETHOD

strates and a cell structure sucthas W +25. ltwas computed  The processing method is based on$hparameter measure-
from the spectral domain approach (SDA) [4]. The cell configynents at the coplanar access planes. It requires the propagation
ration was optimized in order to have about & bEharacteristic to be the quasi-TEM dominant mode and its dispersion to be low
impedance at low frequencies. The coplanar quasi-TEM mode > W + 295). In this case, it is possible to write simple for-
dispersion being low, it is possible to compute its propagationulas for the characteristic impedancg.), propagation con-
constant and characteristic impedance from approximate eqgsiant ), and total loss tangent(s) for coplanar on a substrate
tions derived from conformal imaging [5] instead of a rigorousxhibiting both dielectric and magnetic properties [6]:

numerical analysis as for example the SDA numerical method, g gt [Hrett )
which decreases considerably the computation time. ¢ OV et
In this letter, an easy and fast processing method oftha- ¥ = Wr/E0L0\/Erett ol 2
rameters measured from coplanar cells for determining the com- 96 = ¢ s 106t + @los . - LG et 3)
plex permittivity and also the complex permeability of the subzp tgod © tgom me
strates is proposed. Itis based on the quasi-TEM mode propaga- .
prop q propaga s, & = dlfleﬂ/g;}eﬂ,
t90mett = Hien/Hre)
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HINOJOSA: S-PARAMETER BROADBAND MEASUREMENTS
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Fig. 2. Measured,. andy,. data for alumina (cell dimensiofl” = 50 pm,

W+25 =175 um,h = 635 um,t = 5 um, lengthd = 1 cm): (a}——
¢’ value {u,. = 1 — 50 fixed in the processing method)m—m—=- ¢’ value,
—A—A—a— /. value; (by——— ¢/ value (1, = 1 — 50 fixed in the
processing method).¢—¢—4¢- ¢/ value,—e—e—e— 11/’ value.
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olution of the equations leads to the terms of complex effective
permittivity and permeability:

1 1-T'\/Z;
reff — /, -7 /,/ =3 =0 In(T)(4
Ereffl = Ereft — JEred de Zolko <1+F><Zo> n(7°)(4)
, oy ) 1 1+1'\/ Z

reft = Mpoft — Jlhmef = —J — |V In(T
Hreff = Hyeft — JHreft de Zorio \1-T \Z} n (1)
()

whereZ, is the characteristic impedance of the test device (50

Q).

The exchange between complex effective permittivity and
permeability, and the sample desired relative characteristics
(er, ) is Obtained from approximate equations [5]. In the
case of magnetic materials, the exchange approximate equation
is acquired by a duality relationship. The duality consists to
realize the conversions. — 1/u, ande,.g — 1/ in the
approximate equation for the dielectric case [6].

I1l. M EASUREMENTS ANDRESULTS

The coplanar measurements were realized with the HP85107
network analyzer and the test fixture Cascade Microtech cov-
ering 0.05-40 GHz. This test fixture has two coaxial to coplanar
transitions of 50 characteristic impedance used as probes. It
allows different sizes of coplanar, measurements easy to imple-
ment, repeatable and accurate, thanks to the calibration proce-
dure using a line-reflect-match (LRM) and a calibration kit of
5012 characteristic impedance. The two achieved measurement
reference planes are at the two probe outputs. Return losses, in-
sertion losses and repeatability were better thad dB, —2 dB
and+0.1 dB, respectively, over the entire 0.05 GHz to 40 GHz
frequency range.

Both probes are put at the coplanar access planes in order
to get the S-parameters and to use the above processing
method. To illustrate this characterization method, coplanar
cells were made from thin-film technology [5] on alumina
(el 9.85, e/ < 0.001 at 10 GHz,;;,, = 1) and doped
silicon (. = 11.7, p = 40-60£ cm, i, = 1) samples with
well-known dielectric properties. The measurements performed
on each of these materials were obtained at room temperature
and they are represented in Figs. 2 and 3. The meastred
and p. values for alumina [Fig. 2(a)] correspond to those
anticipated (except the peaks). In order to avoid inaccurate
peaks due to the periodic behavior of the sample-cell with
the frequency (specially when substrate is loss less) and to
obtain accurate results on the complex permittivity values of
nonmagnetic materials, we fixed. = 1 — 50 in the processing
method as in [7]. Thus, the/. values for both samples (solid
lines) have an error better than 3% compared with the manu-
facturer values. In the alumina case [Fig. 2(a)], the resuljng
is approximately 0.5 higher (closer to the known value at 10
GHz) than when the computed. is used. In the processing
method with.,. = 1 fixed, we took into account a lengthless
than 10 mm due to the position error of the probes. In the case
of losses, large errors are also shown for alumina [Fig. 2(b),
solid line] with 1. = 1 fixed. These errors are mainly due

The reflection/transmission method [1], [2] allows to get th& the network analyzer, the test fixture performance, and the
first reflection(l") at the input of the coplanar cell and the firswvhole coplanar cell (dielectric, metallic and radiation) losses.
transmissio{T") along the coplanar cell of lengtli*. The res- The measurement of low-loss samples is difficult with this
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technique. To obtain reasonable accura¢ymust be greater
than 0.2 as in the case of measured doped silicon, where thg;
values are in good agreement with the manufacturer.

[2]
IV. CONCLUSION

A characterization broadband technique of isotropic thin- [3]
film materials has been developed. It uses a coplanar line as cell,
which does not present air gaps. Moreover, its characteristic
impedance can be optimized in order to propagate the dominanit]
mode and to realize accurate measurements. The complex
properties £, 1) are easily computed from a fast processing [5]
method of theS-parameters using approximate equations.
The S-parameters are measured at the coplanar access pIanIaeg
with a network analyzer and test fixture on-coplanar. The
experimental results have demonstrated the technique validityl]
This technique can be conveniently applied to the study of
materials in the 0.05 GHz to 40 GHz frequency range.
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